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ABSTRACT. The evolution of disease requires a firm understanding of hetero-
geneity among pathogen strains and hosts with regard to the processes of
transmission, movement, recovery, and pathobiology. In this chapter, we build
on the basic methodologies outlined in the previous chapter to address the
question of how to model the invasion and spread of diseases in heterogeneous
environments, without making an explicit link to natural selection—the topic
of other chapters in this volume. After a general introdution in Section 1, the
material is organized into three sections (Sections 2—4). Section 2 covers het-
erogeneous populations structured into homogeneous subgroups, with applica-
tion to modeling TB and HIV epidemics. Section 3 reviews a new approach to
analyzing epidemics in well-mixed populations in which individual-level vari-
ation in infectiousness is represented by a distributed reproductive number
[51]—in particular, the expected number of secondary cases due to each in-
dividual is drawn from a gamma distribution, yielding a negative binomial
offspring distribution after stochasticity in transmission is taken into account.
In Section 3, we discuss ideas relating to superspreading events, as well as the
best way to characterize the heterogeneity associated with transmission in real
epidemics, including SARS, measles, and various pox viruses. Section 4 deals
with individual-based approaches to modeling the spread of disease in finite
populations with group structure, focusing on several issues including interac-
tions among movement, transmission, and demographic time-scales, the effects
of network connectivity on the spread of disease, and the spread of disease in
invading or colonizing hosts. The applications in Section 5 focus on bovine TB
(BTB) in an African buffalo population and the potential for BTB to invade
a colonizing Persian fallow deer populations.

1. Introduction

In the previous chapter [35], a set of methods for modeling epidemics in ho-
mogeneous populations was presented. In this chapter, we use these methods to
address theoretical and applied problems on the invasion and spread of contagious
diseases in heterogeneous populations.

Population heterogeneity can often be represented by dividing a host population
into homogeneous subgroups based on spatial location, sex, behavior, genetics or
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other factors. Analysis of basic epidemic properties in such multi-group or multi-
type populations is well-developed [2, 5, 25, 26], but more advanced questions and
applications continue to motivate research in this important area.

Heterogeneous populations with homogeneous subgroups can broadly be di-
vided into those with and those without inter-group transitions on time scales rele-
vant to the analysis. Another important distinction is whether transmission occurs
among individuals in different groups or only among individuals within the same
groups. These two criteria define a basic taxonomy of multi-group disease models,
for which we provide several examples below. For instance, a population may be
structured into groups according to some unchanging social categorization (hence
no transitions among groups) or all individuals are potentially able to interact with
another (hence transmission among groups is possible) but interaction rates are
much greater within than among groups.

In this chapter, we present three approaches to dealing with heterogeneity, us-
ing several of our own recent studies as illustrative examples. The first approach
is the relatively simple approach of dividing a heterogeneous population into a fi-
nite number of homogeneous subpopulations and then modeling the dynamics of
the epidemic using a system of discrete difference equations with application to
tuberculosis and HIV/AIDS in humans. The second approach is an application of
stochastic branching process theory where the individual reproductive number asso-
ciated with each infectious case (i.e. the expected number of new infections caused
by each infected individual) is itself a random variable rather than a constant. We
apply this approach to analyzing outbreak data from several important diseases
including SARS, measles, smallpox, pneumonic plague, and other viral diseases.

The third approach is the use of individual-based discrete time stochastic sim-
ulation models, and their application to investigating how the timescales of host
mixing and recovery from disease interact to determine the probability of a pan-
demic. We also discuss their use in modeling the spread of disease in a network
of individuals characterized by an empirically derived association matrix for the
purposes of obtaining insight into the spread of bovine tuberculosis in the African
buffalo (Syncerus caffer) in the Kruger National Park, South Africa.

In this chapter, for convenience of presentation, we refer to the 25 equations
presented in the previous chapter [35] using the numbers they have been designated
in that chapter, such as [35, Equation number].

2. Interconnected homogeneous subgroups: TB and HIV

Classification of populations into groups is almost always problematic because
group boundaries are ad-hoc. In modeling the spread of HIV, for example, it would
be useful to be able to organize individuals into groups based on sexual preference,
practice, and level of promiscuity. In many ways, an individual’s behavior is better
described by continuous rather than categorical variables. Nevertheless, categorical
approaches are most often taken [63] because of their relative simplicity compared
to approaches using a continuous descriptive variable. For example, the Actuar-
ial Society of South Africa’s (ASSA) official model for projecting the HIV/AIDS
epidemic in South Africa divides the population into four risk groups based on
categorization of sexual behavior, without allowing movement among groups. In
reality, some individuals are bound to change their behavior as they learn more
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about the epidemic, as they age through time, or as their disease symptoms progress
(e.g. [37, 42, 43)).

A critical source of heterogeneity in a population challenged with HIV is the
presence of other diseases that can act as cofactors, particularly venereal diseases
that enhance opportunities for the spread of HIV. Conversely, because it impairs
immune function, HIV infection can have dramatic impacts on host response to
other diseases, particularly the so-called opportunistic infections [44], one of the
most important of which is tuberculosis (TB) [41]. For many TB-infected individ-
uals the infection remains latent and has little effect on their health, but infections
become acute and deadly once individuals are immunocompromised. From a TB
epidemic point of view, the course of the disease is going to be vastly different in
individuals infected with HIV than in otherwise healthy individuals [1, 20, 52, 68].
Accordingly, when considering the interaction of these two epidemics, we can for-
mulate a full TB-HIV model in a homogeneous population, where we include the
transmission and progression dynamics of both diseases. The caveat for this frame-
work is its high level of complexity, which is compounded by the fact that there is a
great level of uncertainty in the parameter values characterizing the epidemiological
features of both TB and HIV.

Alternatively, we can begin by modeling TB in a population in which a certain
proportion of individuals have HIV, without explicitly modeling the HIV epidemic
itself [65]. This approach is justified by the fact that the impact of TB on the
epidemiology of HIV appears to be less dramatic than that of HIV on TB [4, 21,
24, 53]. Under these assumptions, the background HIV structure is not static
because we allow individuals in different HIV groups to progress according to the
WHO disease staging system (susceptible, clinical stages I to IV, and dead). The
essential simplification is that we model the transition of susceptibles to HIV stage
I using a recruitment process, based on historical patterns obtained from empirical
data, rather than modeling HIV transmission in detail. Essentially, we have a TB
only epidemic model, embedded within a population that is heterogeneous with
respect to HIV stages [22, 29, 57, 61]. This kind of framework may prove to
be just as informative as a full TB-HIV model if we are trying to understand the
course of the TB epidemic within a relatively short period of time (e.g. 10-20 years),
because input of the best estimates of HIV incidences from current data are likely
to be as reliable as predictions from an HIV transmission model over the period of
concern.

Here we sketch out how we are using an incidence input approach to develop a
model of a TB epidemic occurring in a population that is heterogeneous with respect
to HIV status. The model is constructed as outlined in Section 6 of the previous
chapter [35], but it has many more disease classes because the aetiology and clinical
presentations of TB are very complex (Figure 1A). Because one of our motivations
for developing a TB-HIV model is to determine the potential impact of reducing
treatment duration in TB infected patients in areas of high HIV prevalence, the
model outlined below has a strong focus on TB treatment classes progressing over
a monthly time scale. This level of time resolution entails 42 different categories of
disease/treatment classes for the TB epidemic alone.

Specifically, individuals newly infected with TB can progress to active disease at
a slow or fast rate, and those with an active infection can be classified as sputum-
smear positive or negative. Among those individuals with an active infection, a
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FIGURE 1. TB in a homogenous (A.) and an HIV impacted popu-
lation (B. and C.). Categories and flows included in the TB/HIV
model used to determine the impact of reduced TB treatment du-
ration on the TB epidemic in areas of high HIV prevalence. A.)
TB transmission, progression, treatment, and mortality is repre-
sented by a total of 42 categories. B.) HIV incidence, progression,
and mortality is accounted for by 5 stages (HIV- and HIV+ stages
I-IV). C.) TB reinfection flow exiting the “fully recovered HIV+
stage III” category, and entering the slow and fast latent TB cate-
gories in HIV+ stage III for HIV non- progressors, and HIV+ stage
IV for HIV progressors. Each HIV stage includes the 42 TB cate-
gories for a total of 210 combined TB/HIV categories. For simplic-
ity we have chosen to represent the TB categories and HIV stages
separately in A.) and B.), while in C.) we show one representative
TB process occurring within the context of HIV progression. In
effect, the pattern displayed in C.) is used for all TB categories,
with HIV- individuals becoming infected at a fixed incidence level,
HIV+ individuals in stages I-III progressing to the next stage at
a fixed rate, and HIV+ individuals in stage IV dying from AIDS
also at a fixed rate.
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certain fraction can be detected and placed on treatment, others are undetectable
(due to subclinical symptoms or lack of access to health care) and will never become
treated, while some can recover completely without ever being treated. At each
time step individuals within the detectable category are placed on treatment at
a given rate, and can then enter either a DOTS or a non-DOTS regimen (DOTS
stands for Directly Observed Treatment Short-course, but represents many more
aspects of a well-run governmental TB control program—see [23]). We model the
impact of treatment regimens that take different lengths of time to cure TB. Treated
individuals can recover transiently or completely, or relapse to active disease. Flows
among these categories were chosen to reflect the most critical processes determining
TB incidence, prevalence, and mortality under different treatment regimens, paying
particular attention to case detection, default, relapse, and reinfection.

In the combined TB-HIV model, we assume HIV-negative individuals become
infected with HIV at a fixed input level given by reported incidence levels, and
flow into the corresponding TB category of individuals that are in stage I of their
HIV infection. HIV-positive individuals then progress through the four HIV stages,
for a total of 42 x 5 different TB/HIV categories (Figure 1B). Individuals in HIV
stage IV die of AIDS according to a fixed HIV mortality rate. We allow for HIV
to affect TB infection, progression, and mortality rates—and vice-versa. All TB
processes, together with the background mortality and HIV mortality, are modeled
as competing rates within a continuous and deterministic framework that is updated
on a discrete monthly time step. This is an approximation to the exact solution
of a deterministic model [35, Equation (6.4)], which allows all processes to occur
simultaneously but restricts each individual to undergo one state transition per
time step (unless the model is specifically adjusted to allow multiple transitions).
HIV progression from stages I through IV occurs simultaneously with progression
through various TB stages. At each time step, any given individual can progress
in both diseases, in only one, or in neither.

Preliminary results indicate that a 2- compared with a 6-month treatment
regime may offer important benefits that appear to reduce when HIV prevalence
is high. The model is being used to investigate this reduction in benefits in more
detail under new drug scenarios that include increased treatment compliance by
patients [9, 72], reduced relapse after treatment completion [30], and enhanced
case detection [10, 31].

3. Migrants and the spread of disease

In Section 8 of the previous chapter and Section 2 of this chapter, we presented
models in which individuals respectively 1.) do not make transitions among non-
disease categories of individuals and 2.) make transitions along a unidirectional
chain of categories. Here we generalize these approaches by, in theory, permitting
any individual in any category to move to any other category, where movement in
the absence of disease is defined by a migration matriz M (k) with elements M;; (k)
representing the probability that an individual in category ¢ moves to category
j during time interval [k,k + 1], 4,5 = 1,...,n [64]. This approach generalizes
the above mention earlier sections, and it is applicable to modeling epidemics over
a region consisting of several urban areas or in animal populations that have an
identifiable group (e.g. troop, pod, colony, herd) or metapopulation structure [34,
36, 38, 40, 80].
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We begin by considering a population structured into n, identifiable groups.
For generality, we also divide the population by gender and include age structure,
because movement rules among animal groups are very often influenced by gender
and age of individuals. This level of generality, however, can turn into a notational
nightmare. Thus one of our goals in this section is to present a notation that does
not obscure the structure of the equations themselves. There are many ways to do
this—our goal is to preserve the macrostructure in the equations while choosing
representations that are mnemonic where possible.

The notation is built around the symbol Z, where Z = X denotes females
and Z = Y males (the obvious mnemonic being the genetic context of X and Y
chromosomes). A superscript U = S, E, I, R(D,V) is used to denote disease class
(where E, I,V etc. may be staged: e.g., I;, I = 1,...,n;). Also, a subscript a =
1,...,n, is used to denote age and a subscript ¢ = 1,...,n4 is used to denote group
(e.g. herd etc.). Thus the variable represents the number or density of individuals of
gender Z, disease class U, age a, and group i. As in the previous section, we avoid
the additional level of subscripting, by using 7 = «,~, u etc., rather than p, to
represent transition probabilities (or proportions in large populations represented
by deterministic models). We also use the same convention to refer to the migration
parameters, but with an additional superscript needed to denote gender and another
subscript needed to denote the proportion of individuals leaving group 4 that move
to group j—that is, the migration parameters have the form M ﬁgj (k), which can be
viewed as an ng X ny migration matrix for each gender, age and disease class of host.
With this notation, using EPI to denote terms controlling disease class transitions
and DEMOG to denote terms controlling demographic transitions (aging, births,
deaths) all equations have the generic form

zY., ;(k+1) = EPIZY (k) + DEMOGZY (k)
3.1) S (MY 28 ) - MZV(R)ZE )

aji aij
i=1, i#£j

We will not elaborate further on the structure of the terms in EPI and DEMOG
in this section. We already have a sense from our models in Section 2 what form
the EPI terms might take, while DEMOG terms follow the type of structure found
in Leslie matrix formulations of age-structured models (e.g. see [17] for an example
in the context of vaccinating African buffalo to control bovine TB). In terms of
the movement process, we generally expect the coefficients MgU (k) to depend on
the state of each group in our population (e.g. [80]), and to reflect a spatial topol-
ogy typically represented by a set of parameters §;; characterizing the “distance”
(Euclidean or otherwise) between groups i and j over the time interval [k, k + 1).
Dependence on group size might be quite complex, as discussed more fully in [50].

The primary issue we want to focus on in this section is the fact that in group
structured systems of the type modeled by equation (3.1), we can define a matrix
R, of elements Réj defined to be the expected number of individuals in group j that
will be infected directly (i.e. in the next generation) by an individual infected in
group i. We will return to the question of how to calculate Ry, but once calculated
it can be used to derive the expected number infected in the offspring generation
for different situations. For example, if an infective is introduced to group j at time
k = 0, then, in an otherwise susceptible population, the expected number infected
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in the offspring generation is

0
R ... }géj .-~ Ry : .
Ry =| ¢ & r |1 =) R
R ... Ry ... Ru" : i=1
0

Similarly, if an infective is introduced into group j with probability w; at time
k = 0 (this probability could be proportional to the initial group size or determined
by its location on a landscape) then, in an otherwise susceptible population, the
expected number infected in the offspring generation is

n n
Ry = Z Z wj Ry .
i=1 j=1

Diekmann and Heesterbeek [26] have developed methods for generating the
matrix Rg, which they have dubbed the nezt-generation matriz. This matrix can
also be generated numerically through simulation; but no example of this for a rel-
atively detailed system has been published to date. If the next-generation matrix
is irreducible and acyclic, its dominant eigenvalue is the basic reproduction num-
ber intrinsic to the system (as opposed to that defined above for the vector w of
introduction probabilities) [26]. A more detailed discussion of the properties of the
next-generation matrix can be found in Ovoskainen and Grenfell (2003).

An SIR model of the form (3.1), in a system without age or gender structure,
has been analyzed by Hagenaars et al. [38] to consider how disease persistence is
influenced by the tradeoff between the number of groups n, and the initial group
size N; = N, it = 1,...,ng, when the total initial population size Ntz = ngN
is fixed. This model assumes that individuals in one group contact individuals in
any other group at a relative rate e, which implies that f(e) = m is the
fraction of contacts with individuals from one’s own group, with the rest equally
distributed among the other groups. They also assume a relatively simple demo-
graphic component in which 1.) the birth and immigration rates are balanced by
death and emigration rates, 2.) the migration is to a population that is external
to the structured group of interest, and 3.) the external population is at constant
disease prevalence. Their stochastic analysis of this model reveals that: “... if
the overall transmission potential is kept fixed, increasing the level of spatial het-
erogeneity typically results in a decrease in disease persistence. For weak spatial
coupling between subpopulations, the persistence changes as a function of coupling
can be understood in terms of rescue effects. For intermediate and strong spatial
couplings, coherence effects become important.” Here, rescue effects imply that
fade out of disease in one group is followed by reinfection from another group [14].
Also coherence in the context of relatively slow diseases implies similar levels of
incidence in all groups, which for fast diseases can take the form of synchronized
oscillations.

4. Individual heterogeneity in well-mixed populations

4.1. The individual reproductive number. For the past 25 years analysis
of epidemic dynamics has centred on the basic reproductive number, Ry, which
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is the expected number of new infections due to each infectious individual in a
wholly susceptible population [39]. Models of homogeneous populations usually
use a point estimate of Ry, implicitly assuming that every individual has the same
degree of infectiousness. In reality, however, the infectiousness of each individual (as
manifested by the number of secondary cases they cause) varies due to a complex
blend of host, pathogen and environmental factors. The joint action of these factors
leads to continuous variation in infectiousness and distinct risk groups often cannot
be recognized a priori, thereby hampering our ability as modelers to represent this
heterogeneity using group structure as described in the previous section.

To account for this variation, we introduce the individual reproductive num-
ber, v, defined as the expected number of new infections that a given individual
in the current generation will cause in the next generation [51]. At the population
level, v has some probability distribution that can be fitted to datasets describ-
ing the observed distribution of secondary cases caused by each individual (i.e. the
empirical realization of the offspring distribution introduced in Section 7 in the
previous chapter). The actual number of cases caused by each individual will vary
stochastically around v, so the realized offspring distribution will be a compound
distribution with the form Poisson(v) (i.e., a Poisson with parameter v that is it-
self distributed). In a completely homogeneous population, where all individuals
have identical infectiousness v = Ry, the offspring distribution will be Poisson as
discussed in Section 7 of the previous chapter [35]. If all individuals transmit at
the same rate (i.e. they have equal transmission coefficients 3) and exponentially-
distributed infectious periods (i.e. they have constant per capita rates of recovery or
death), then v is distributed exponentially with mean Ry and the offspring distri-
bution is geometric [70]. These two scenarios represent the standard assumptions
used in homogeneous population models.

To allow for a more flexible degree of individual variation in infectiousness, we
propose a model with a gamma-distributed v. Gamma distributions are a useful
two- parameter family of distributions for developing epidemic theory in heteroge-
neous populations, because they are unimodal and non-zero only on (0,0c0). More
important for the development of branching process theory, however, the offspring
distribution arising from a population with gamma-distributed individual repro-
ductive number v is a negative binomial distribution. Further, this model is a
generalization of the two conventional models (Poisson and geometric offspring dis-
tributions), as described below. The negative binomial distribution is typically
expressed in terms of a scale parameter p and a dispersion parameter k. To em-
phasize the link with epidemiological models, we deviate from this practice and use
the notation qﬁgﬁ . to denote a negative binomial offspring distribution with mean
Ry related to p and k by the equation

(4.1) Ro—k (% - 1) .

The probability generating function for negative binomial distribution has the form

—k
Negative Binomial %OBJc 2 g(z) = <1 + %(1 - z)) .

As mentioned in Section 7 of the previous chapter, the probability go that an
infectious individual in the parent generation will not transmit to anyone in the
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and Z ~ negative binomial (circles).

offspring generation is g(0), from which it follows for the negative binomial that

(4.2) do = <1 + %) -

The Poisson and geometric distributions are special cases of the negative binomial
distribution with £ — co and k = 1, respectively.

During a number of recent epidemics, contact tracing of cases provided suffi-
cient data for the construction of empirical offspring distributions to which Poisson,
geometric and binomial distributions could be fitted. An example of this data for
the SARS outbreak in Singapore, 2003 [48], is illustrated in Figure 2. Maximum
likelihood methods can be used to find parameters of the negative binomial, Pois-
son, and geometric distributions that best fit these data. Of course, because of its
extra parameter, the negative binomial distribution will always provide a better fit
but the Akaike information criterion can be used to assess whether the improve-
ment in fit over the one-parameter Poisson or geometric models is sufficient to merit
inclusion of the extra parameter (e.g. see [13]). Further, bootstrap methods [32]
can be used to estimate confidence intervals for the parameters characterizing these
best-fitting offspring distributions. The results of such an exercise for 14 different
disease datasets are summarized in Table 1, where we use ~ to denote estimated val-
ues of the parameters Ry and k. The Akaike weights reported in Table 1 represent
the probability that each model is the best choice to represent the data of the three
candidate models considered. The datasets include well-traced single outbreaks,
combinations of data from multiple outbreaks, and surveillance data tracking the
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first generation of many introductions of a disease. Note that many of the datasets,
particularly measles and smallpox, pertain to populations with high levels of vacci-
nation, so observed heterogeneity may reflect differences among vaccinated and un-
vaccinated individuals rather than intrinsic host or pathogen characteristics. More
details pertaining to data, methods and results are given in Lloyd-Smith et al. [51].

A large degree of individual variation in infectiousness is evident in almost all of
the 14 datasets analyzed in Table 1. For five of the disease datasets, the 90% confi-
dence intervals for the negative binomial dispersion parameter k£ are bounded below
1, indicating that only the negative binomial offspring distribution can represent
the observed patterns. The best estimate of k for 11 of the datasets suggests that
heterogeneity is either greater or much greater than that arising from an exponen-
tial distribution of infectiousness (i.e. best-fit k& < 1). Only one dataset exhibited
sufficient homogeneity in infectiousness that the Poisson model was favored by the
Akaike weight model-selection technique. This was Ebola hemorrhagic fever with
the most likely value for k estimated to be k= 5.1; this dataset had only 13 index
cases and contact tracing was probably incomplete, so our confidence in this result
is limited.

In half of the epidemics the best estimate for k was k < 1/3. The estimated
values of R are also quite low, and likely biased because the detailed contact
tracing data required for this analysis is much more difficult to obtain when disease
spread is very rapid. The low values for k, together with relatively low values for
Ry, suggest that the great majority of individuals are unlikely to infect any other
individual. For example, if k¥ = 1/3, then from equation (4.2) it follows that for
each individual to have a greater than 50% chance of infecting another individual,
Ry would have to exceed

(2)° -1

=233
3 )

which is outside the 90% confidence interval for all the datasets analyzed except
for smallpox in Europe over the period 1958 to 1973.

Similarly, our methods allow us to estimate that 73% of SARS cases in Singa-
pore were below the critical infectious level of v = 1, while only 6% had infectious-
ness of v > 8 [51]. This result is consistent with field reports from SARS-afflicted
regions [48, 66] indicating that infectiousness is highly overdispersed, but con-
trasts sharply with many published SARS models that do not take heterogeneity
into account (reviewed in [8] and [28]).

4.2. Characterizing heterogeneity in infectiousness. The dispersion pa-
rameter k£ has little intuitive value as a measure characterizing the heterogeneity
of infectiousness among individuals, particularly as the mean infectiousness Ry,
expressed in equation (4.1), is not itself independent of k. One way to character-
ize heterogeneity is to ask what percentage of infectious cases are responsible for a
given percentage of all on-going transmission. In a recent publication, Woolhouse et
al. [79] proposed a general “20/80” rule: 20% of infectious individuals cause 80% of
all infections for vector-borne and sexually transmitted diseases. In a homogeneous
population the rule would be 20/20 or 80/80.

In general for a heterogeneous population we expect a “20/P” rule to arise,
where increasing levels of heterogeneity in v lead to increasing values for P. From
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TABLE 1. Parameter estimation and for the Poisson (P), geometric
(G) and negative binomial (NB) models of the offspring distribu-
tion and statistical support.

K P%
Ry k (“20/P” rule)
Akaike  (90% CI (90% CI (90% CI
Datasets Model weight for NB) for NB) for NB)
SARS P 0 1.63 0.16 88%
Singapore 2003 G 0 (0.54,2.65) (0.11,0.64) (60,94)
N =57 NB 1
SARS P 0 0.94 0.17 87%
Beijing 2003 G 0 (0.27,1.51) (0.10,0.64)  (60,95)
N =33 NB 1
Measles P 0 0.63 0.23 81%
US 1997-9 G 0.01 (0.47,0.80) (0.13,0.40) (70,92)
N =165 NB 0.99
Measles P 0 0.82 0.21 83%
Canada 1998-2001 G 0.15 (0.72,0.98) (0.09,0.52) (44,86)
N =49 NB 0.85
Smallpox P 0 3.19 0.37 71%
Europe 1958-73 G 0.02 (1.66,4.62) (0.26,0.69) (59,79)
N = 32° NB 0.98
Smallpox P 0 0.80 0.32 74%
Benin 1967 G 045 (0.32,1.20) (0.16,1.76)  (44,88)
N =25 NB 0.55
Smallpox P 0 1.49 0.72 58%
W. Pakistan G 071 ) (0.32,2.23)  (41,74)
N =47 NB 0.29
Variola minor P 0 1.60 0.65 60%
England 1966 G 071 (0.882.16) (0.342.32)  (41,73)
N =25 NB 0.29
Monkeypox P 0 0.32 0.58 62%
Zaire 1980-84 G 0.62 (0.22,0.40) (0.32,3.57) (36,74)
N =147 NB 0.37
Pneumonic plague P 0 1.32 1.37 0.47%
6 outbreaks G 067 (1.01,1.61) (0.88,3.53)  (37,54)
N =174 NB 0.33
Avian influenza P 0.17 0.06 0.026 100%
S.E. Asia 2004 G 032 (0,018  (0.026,00)  (20,100)
N =33 NB 0.51
Rubella P 0 1.00 0.032 100%
Hawaii 1970 e 0 (0.0,1.95) (0.013,00)  (20,100)
N =19 NB 1
Hantavirus P 0.31 0.70 1.66 45%
Argentina 1996 G 0.52  (0.20,1.05) (0.24,00) (20,80)
N =20 NB 0.17
Ebola HF P 0.56 1.50 5.10 34%
Uganda 2000 G 028 (0.852.08) (1.46,0) (20,46)
N =13 NB 0.17

*neither the raw data nor a fitted confidence interval were available.
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FIGURE 3. Proportion of transmission expected from the most in-
fectious 20% of cases, for data drawn from single outbreaks (cir-
cles), multiple outbreaks (squares), and long-term surveillance (tri-
angles). Dashed lines show proportions expected under the 20/80
rule (top) and in a homogeneous population (bottom). Super-
scripts: v indicates a highly-vaccinated host population; * indicates
an outbreak that is probably atypical. See details in Lloyd-Smith
et al. [51].

the last column in Table 1, we see that “20/80” rule could well be a slight under-
estimate of the variation observed for SARS, fairly accurate for measles in highly
vaccinated populations, and a slight overestimate for smallpox, monkeypox and
pneumonic plague. For other diseases broad confidence intervals prevent firm con-
clusions, but best-fit parameters indicate that the “20/80” rule may seriously under-
estimate the heterogeneity of infectiousness for H5N1 avian influenza and rubella,
and overestimate the heterogeneity for hantavirus and Ebola hemorrhagic fever.

The theory allows us to construct a curve denoting the expected proportion
of transmission due to the most infectious 20% of transmitting individuals, as a
function of the dispersion parameter of the negative binomial offspring distribution,
k. (Of course, 20% is arbitrary and we can construct curves for any percentage we
choose.) In Figure 3 such a curve is depicted along with the locations on this curve
predicted by best-fit parameters for some of the disease datasets listed in Table 1.

From a technical point of view, particularly when complete contact tracing and
construction of a reliable histogram (such as in Figure 2) is difficult to achieve, a
crude estimate of the best fitting negative binomial distribution can be obtained
from estimates of the mean number of offspring Ry and proportion gy of non-
transmitting infected individuals. In this case the value for k is calculated by
solving equation (4.2) implicitly using an appropriate numerical method.
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In conventional theory for homogeneous populations, Ry is the only statistic
needed to calculate the probability Psp; of a major epidemic, as discussed in Section
7 of the previous chapter. The same branching process theory applies to heteroge-
neous populations, in that the value zo, to be used in [35, Equation (7.3)] is still
the solution to the probability generating function equation z = g(z), but now the
probability generating function is for the negative binomial rather than Poisson
distribution. Thus z,, in this case is the implicit solution of the equation

2= <1+%(1—z)>_k.

Using this equation it becomes clear that the probability of a major epidemic is
now critically dependent on both k and Ry, and that greater degrees of individual
heterogeneity in infectiousness lead to higher probabilities of stochastic extinction in
the early phase of disease establishment (Figure 4). Thus, along with Ry, it should
be very useful to specify Pep; as well. The latter informs us of the probability with
which disease will invade the population (i.e. occurrence of an epidemic), while the
former informs us on how fast it will spread, if the disease should invade.

4.3. Superspreading events (SSEs) and loads (SSLs). In all epidemics,
whether in homogeneous or heterogeneous populations, some infectious cases will
not infect any individuals while others will infect many more than the expected
number Ry. In heterogeneous populations this greater degree of transmission may
arise from biological or social properties of the host individual, while in homoge-
neous populations it arises from random circumstance; that is, the host individual
happens to spend time in close confinement with other individuals (e.g. in a crowded
hospital ward or aboard a commuter train) while highly infectious. Occurrences of
this kind have been referred to as superspreading events (SSEs) [48, 49, 62, 66],
even though the individual involved may not have been more infectious than the
average infective individual.

Despite numerous published accounts of SSEs in the literature, 37 of which are
summarized by Lloyd-Smith et al. [51], no coherent approach to their quantitative
analysis has emerged until recently. In the case of SARS, for example, using the
random variable Z to represent the actual number of individuals infected by a
known infectious case, SSEs have been defined as Z > 8, Z > 10, Z > 10, and
“many more than the average number” [48, 62, 66, 73]. We propose a general
protocol for defining an SSE that scales with the infectiousness of different diseases
and naturally incorporates the influence of stochasticity [51]. The definition centers
on using the Poisson distribution with mean R (where R is the effective reproductive
number for the disease and population in question, taking immunization levels into
account) as the expected range of Z due to stochasticity in the absence of individual
heterogeneity. An SSE is then any case causing more secondary cases than would
occur in at least 99% of infectious histories in such a homogeneous population;
that is, Z > Z%, where Z% is the first integer value for which the cumulative
proportion of cases for the Poisson distribution is at least 0.99 (i.e., because the
Poisson distribution is discrete Z%g will, in general, not correspond exactly to the
99" percentile: it is first integer at or beyond this percentile point).

From this definition it follows that in a homogeneous population, at most 1%
of infectious cases causes SSEs. From a tabulation of the cumulative Poisson dis-
tribution, one finds for example that Z > 6 is an SSE when R = 2, while an SSE
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FIGURE 4. Probability of stochastic extinction of an outbreak
beginning with a single infectious case for a branching pro-
cess epidemic with negative binomial offspring distribution (i.e.,
Zoo, cf. [35, Equation (7.3)]). (A) Extinction probability versus
population-average reproductive number Ry for different disper-
sion parameters k. (B) Extinction probability versus dispersion
parameter k for different values of Ry.

for R = 5 requires Z > 11. In a heterogeneous population, for an epidemic with
effective reproductive number R, the tail defined by Z > Z% will contain an in-
creasing proportion of the population with increasing heterogeneity. We define the
magnitude of this increase as the superspreading load (SSL) associated with a het-
erogeneous population. Specifically, if the tail defined by Z > Z% contains r% of
events, then we define SSL= r. In the context of the negative binomial distribution
we can plot the value of SSL as a function of k, as illustrated in Figure 5. In this
figure we have selected values of R for which Z% defines a tail with precisely 1%
of events. As noted above, this is not the case for arbitrary values of R due to the
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FIGURE 5. Superspreading load (SSL) versus dispersion parameter
k for outbreaks with negative binomial offspring distributions. The
SSL reflects the percentage of index cases expected to cause 99tP-
percentile SSEs. Values of R were selected such that Pr{Z >
Z9® | Z : Poisson(R)} is precisely 0.01, as described in the text.

discreteness of the Poisson distribution, which will cause discontinuous jumps in
SSL as R changes. One way to deal with this problem is to re-define SSL as

(4.3) r=100 {0 (67% (2% - 1))+ > owr(2) ],
Z=2z%

where ¢%i(Z ) is the cdf of the negative binomial distribution, and 0 < 6 < 1 is
selected so that in the case of the Poisson (k — 00) with mean R the value for SSL
is precisely 1%. That is, some proportion of the density in the next-lower bin of the
Poisson cdf is added to bring SSL to exactly 1%, and the identical proportion of that
bin is added when calculated the SSL for negative binomial offspring distributions.

Note from Figure 5 that for R in the range [1,20], the SSL is maximized when
k lies in the range [0.1,1]. In particular, for R = 6.1 (2%, = 13), the SSL is
approximately 12 for £ = 0.1, rises to a maximum of approximately 16 at k& around
0.5 and drops again to approximately 14 at k = 1. The loads are not quite as severe
for lower values of R, but even for the case R = 1.3 (Z%, ; = 5 ), the SSL rises
to a maximum of approximately 9 at k£ around 0.2. Thus levels of heterogeneity
observed in real epidemics (e.g. SARS or smallpox, Table 1) will result in an order of
magnitude more SSEs than would be expected if the epidemic were in a population
that is homogeneous with respect to infectiousness.
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5. Individual-based models in heterogeneous populations

Individual-based models, also referred to as agent-based models or microsimula-
tions, depend on the computational power of computers to represent large numbers
of individuals each with their own independent record containing information rel-
evant to the questions being addressed (e.g. age, sex, location, disease status, and
so forth). This information is then updated either at stochastically determined
times (event driven models) or periodically (discrete time or ‘clock-driven’ models)
(e.g. see [12]). The amount of detail that can be put into such models is limited
only by the size of the population to be simulated and the power of the computer
used to carry out the simulations. Currently, several groups are developing gen-
eral agent-based modeling software suitable for simulating epidemics in spatially
and demographically structure populations (e.g. [33, 46, 71]). The three stud-
ies outlined in this section used computer programs written in Matlab® and C++
specifically for the problems at hand. The material presented in the first subsection
extends our intuition relating to the spread of epidemics in highly idealized popu-
lations consisting of n homogeneous groups, initially of size m, linked to each other
by migration patterns representing particular spatial configurations. The material
presented in the second subsection uses association data obtained from empirical
studies to explicitly characterize the contact process when modeling the spread of
disease in a population where the movements of each individual are known. Finally,
in a third subsection we introduce the question of what happens when a disease
invades a host population that is itself invading and colonizing a region, with an
illustration on a realistic heterogeneous landscape.

5.1. Epidemics in a group structured population with movement
among groups. The formulation in this section is based on the assumption that
a population consists of m identifiable subpopulations—a classic metapopulation
structure—which is fixed throughout time, but the number of individuals N; in
each subpopulation varies with time and can become 0. In this case, the total pop-
ulation size is N = Zf;l N,. The subpopulation in each group is further structured
into S and I disease classes. The model reflects two processes: transmission within
groups and movement between groups [64]. Each group is regarded as being ho-
mogeneous with respect to the hazard of transmission, where for the i*" group with
transmission parameter 3; and frequency-dependent transmission, it follows that
the probability that a susceptible in group ¢ will become infected over the interval
[k, k + 1] is (cf. [35, Expression (6.6) and (8.1)])

J{; z‘((];f)) ) '

For simplicity, assume that movement between groups is not influenced by the
size of any group other than the group from which an individual is departing. Our
assumption that the subgroups are homogenous thus implies that any individual
in group ¢ has the same probability, u;x(N;(k)), of leaving its current group during
time step [k, k + 1]. The group that a departing individual then joins can reflect
both spatial (e.g. distance among groups) and recipient group factors (e.g. size
of groups). Ways of characterizing these movements have received considerable
attention in the ecological literature [11, 15, 34, 50, 80|, leading to movement
matrices of the form considered in Section 3.3, with elements M;; that may depend
in relatively complex ways on the group size vector N = (ny ..., nm)'. Here we only

D7, = 1 —exp <_/6i



MODELING THE INVASION AND SPREAD OF CONTAGIOUS DISEASES 17

consider relatively simple rules that permit us to focus on epidemiological rather
than demographic questions.

Cross et al. [17, 18, 19] used an individual based model of a metapopulation,
structured at the start of the simulation into equally sized groups spatially organized
on a square lattice, to investigate the question of how SIR(V) epidemics (recall V is
recovered with immunity) depend on relative rates influencing the spread of disease
within groups versus the movement of infected individuals among groups. The
relative rate of the spread of disease within groups was controlled by the value of
a transmission parameter 3, which was assumed to be the same in all groups. The
relative rate of the spread of disease among groups was controlled by a departure
probability parameter p that was assumed to be the same value for all groups and
independent of both time k and departing group size N; (k).

Three different sets of rules were used to assess the effects of spatial connections
on the epidemic in question. First, departing individuals were assumed to move
to only one of their four nearest-neighboring groups, each with probability 1/4,
and, to avoid boundary effects, opposite edges of the array were connected so that
effectively, the population was moving on a torus. Second, individuals were assumed
to move with equal probability to one of only two nearest-neighbors, an analysis
that is topologically equivalent to populations confined to a one-dimensional loop
(e.g. villages located around the circumference of a lake). Third, individuals were
permitted to join with equal probability any other group, which is equivalent to an
“island” model previously used by Hess [40] and Fulford et al. [34] to study the
spread of disease in metapopulations. Finally, Cross et al. assume that all infected
individuals recover to an immune class at a constant probability per time step,
Pa = a. (Note, p, is only approximately equal to the recovery rate a when « is
small: more precisely p, = 1 — e~ ®). Although all groups begin in this particular
study with the same number of individuals, group sizes do change over the course
of simulations. The symmetries within the model with respect to group structure
(e.g. lack of boundaries on a torus or loop), however, ensured that group sizes
remained relatively equitable during the course of each simulation.

Cross et al. [17, 18, 19] compared the dynamics of two diseases with the same
Ry (=~ B/a when time steps are relatively small), but one disease was slow with
a relatively long infectious period (e.g. 8 = 0.05, & = 0.01) while the other was
an order of magnitude faster (e.g. 5 = 0.5, @ = 0.1). The probability p, for an
individual to move in one time step was the same for both cases: thus the analysis
essentially compares diseases with equal values of Ry that are fast and slow relative
to the time scale of movement. The spread of diseases was compared for four
different host population structures varying in levels of heterogeneity: specifically,
a single homogeneous group with 1000 individuals, 10 homogeneous groups each
of 100 individuals, 25 homogeneous groups each of 40 individuals, and 100 groups
each of 10 individuals.

As expected [40, 77], the probability of invasion decreases as the population is
divided into more smaller groups because the number of intergroup transfers needed
for the disease to penetrate the entire population must increase (Figure 6). Also
slower diseases are more likely to invade structured populations than faster diseases
with the same Ry because, in the former case, the mean period of infectiousness
(1/a) is longer, thereby providing more time for inter-group movement of infectious
individuals. The simulated epidemics in the single group and 100 group populations
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FIGURE 6. Histograms of the proportion of individuals infected
during an epidemic for different transmission () and movement
(1) values scaled by the probability of disease recovery («). Each
parameter set was simulated 1000 times on an 11 x 11 toroidal array
of groups with 10 individuals each and a recovery probability of
0.1.

were far more similar for the slow than the fast disease. In other words, slow diseases
are better approximated by a single homogeneously mixed group than are fast
diseases (Figure 7). The mean infectious period (1/a) defines the natural disease
timescale. When movement occurs on roughly the same timescale or longer, mixing
among groups should be modeled mechanistically with explicit host movement (as
presented in this and the next subsection) rather than implicitly as a between-group
transmission rate that operates simultaneously with within-group transmission.

In socially or spatially structured populations, invasion of disease may depend
more on the rate of movement between groups p,, divided by the mean period of
infectiousness than on Ry itself (where the latter is approximate by the transmission
rate 8 divided by the recovery rate a). In Figure 6, Ry (= /«) is 20 for all cases.
When p,/a is small, however, the disease does not invade the metapopulation. As
a rule of thumb, a disease will invade the metapopulation if p,/a is greater than
the reciprocal of the expected number of individuals that will be infected within a
single group [17, 18, 19]. This makes intuitive sense because in this model system
ppu/a is the expected number of between-group movements made by each infectious
individual. Thus p, /o multiplied by the expected number of infected individuals
is the expected number of infected dispersers per group, which must exceed 1 for
a pandemic to occur. When Ry is high almost all individuals in a group will be
infected. Thus, for a pandemic to occur, p,/c should be greater than the reciprocal
of the average group size. This rule of thumb, however, also depends upon the
average number of neighboring groups. The completely connected topology has a
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FI1GURE 7. The average proportion of the population that becomes
infected depends on the spatial configuration: torus, loop, or non-
spatial. In the non-spatial array individuals could move to any
other group during a single time step. All simulations have 121

groups. Each parameter set was simulated 1000 times, with a

group size of 10 and a recovery probability of 0.1.

lower movement to recovery threshold than a more restrictive loop topology (Figure

8).
5.2. Epidemics on dynamic social networks: Populations structured
by an association matrix. In Section 5.1 we selected three canonical topologies
to describe the movement process in a group structured population. Each of these
topologies is an idealization, none of which may fit a particular system very well.
Further, in real populations movement is influenced by seasons and space, and
movement rates may be time dependent. As a result, individual contacts in real
populations are most accurately represented by a dynamic network of social inter-
actions (described in more detail below). Network models provide a much-needed
alternative to the assumption of random mixing. Consequently, they have been
the focus of much recent research in epidemic theory [33, 54, 58, 75]. Network
researchers, however, are challenged by depiction of changing social contacts (often
resorting to using static, unchanging networks) and by the unavailability of data
from which to estimate network parameters.

One approach to these challenges is to apply established methods from studies
of animal behavior by constructing an association matriz depicting the changing
social interactions of all studied individuals [76]. A demonstration of this method,
discussed below, is a study reported by Cross et al. [16]) on the spread of disease
in an African buffalo population in the Kruger National Park, South Africa. We
tracked buffalo with radio collars for a two-year period, noting how often different
individuals were seen together in the same herd. These data were then used to
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construct a time-dependent set of association matrices A(k) with entries a;;(k)
that represent the proportion of time individuals ¢ and j (dyad ¢-j) spent together
(i.e. were located in the same herd) over the k*® time interval [k — 1,k], k =
1,...,T (Cross et al. [17, 18, 19], Szykman et al. [69], Whitehead [76], Wittemyer
et al. [78]).

Assuming that association indices a;;(k) for all dyads in the population have
been measured, the matrices A(k), k =1,...,T, can be used in an individual-based
model to investigate how a disease introduced at time ¢ = 0 into this population
might spread through it. Specifically, let the vector X;(k) = (%), a,b = 0 or 1,
represent the disease state of individual ¢ at time k, where z;(k)’ = (0,0), (1,0)
and (0,1) (" is the transpose of the vector) respectively represent a susceptible,
infected, and recovered individual at time ¢. Then over a time interval [0, T], every
individual that becomes infected has a profile of the form

X;(1) = (0,0)" (S class) 1=0,....,ky —1<T
(5.1) X;i(1) = (1,0)" (I class) l=Fki,...,kg —1<T provided ¥y <T
X;(1) = (0,1)" (R class) l=ky,...,T provided ks < T,

where k1 and ko are the points in time where the individual made the transition
from S — I and I — R respectively. Thus summing over the first and second
entries for each individual at time k immediately tells us how many individuals are
infected and how many removed at time k. Now assume that the hazard rate for the
transmission of disease between an infected individual j and a susceptible individual
i,4,7=1,..., N, is determined by a common underlying transmission coefficient 3
multiplied by the association coefficient a;;(k) (recall that a;;(k) is an estimate of
the proportion of time individuals ¢ and j spent together over the period [k — 1, k].)
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These pairwise transmission hazards are then summed over all j to obtain the total
hazard rate for susceptible . Additionally, assume that infected individuals enter
a V class at a rate a independent of time. Under these assumptions, recalling [35,
Expressions (6.6) and (8.1)], the probabilities of infection and recovery take the
form (note the use of vector dot product in the first expression):

=B 3 aij (R)((1,0)-X; (k)
(5.2) Pir, =1—e 7= , k=0,1,2,...,T -1,

Pa=1—e"“
Note that the i*? individual’s probability of infection differs from other individuals
because the ! individual has its own set of association coefficients {a;;(k),j =
1,...,N}. This approach essentially elaborates the average contact rate in a mass
action expression of transmission with individual level details (the association ma-
trix A(k) with elements (A(k)),; = a;;(k), 3,7 = 1,..., N, determines the actual
contact rates for each individual).

In most cases, the number of individuals monitored to obtain the association
matrix A is only a small fraction of the population, perhaps as low as 5%. Thus the
question in the context of individual-based models is how to statistically create the
other 95% of individuals in the population by scaling up the matrix A from N2 to
(20N)? entries, while retaining the emergent group structures (i.e. herd structure
in the case of African buffalo) evident in the sampled subset of the population.
A quick and dirty solution in the case of a 5% sampling is to assume that the
every individual would have 20 times more contacts than indicated by the matrix
A arising from the sample; in which case, we might simply assume that

~208 32 ai; (k)((1,0)-X; (k)
Pir, = 1-e =t .
This simplification is adequate when the number of infected individuals is relatively
large, but not for invasion analysis. In this latter case, introducing one infective into
the model is not equivalent to introducing 20 infectives into the population because
the effects of demographic stochasticity cannot simply be scaled up. Further, this
kind of scaling ignores the network correlations between infected individuals that
inevitably build up in the early stages of disease invasion [45]. If we are only inter-
ested in a comparative analysis, however, of the course of an epidemic for different
values of 8 and « that constitute the same ratio Ry = (/«, then an individual
based simulation using an association matrix constructed from a population sam-
ple provided some insights into the effects of the relative differences in the disease
and movement time scales on epidemics.

Associated with every N x N matrix A(k) is a network of N nodes, where the
i*® and j*" nodes are connected at time k if and only if a;; > 0. The importance
of this network topology on the spread of disease can be investigated by randomly
rewiring a proportion § of all connections to obtain versions of the matrices A (k)
that represent the same number of connections. Any non-random group structure
inherent in the topology at time k& would be progressively destroyed as ¢ increased
from 0 to 1. In particular, randomizing all connections (6 = 1) destroys all group
structures while preserving the average degree of connectedness of the network. Two
types of rewiring simulations can be conducted. In static rewiring simulations, a
proportion § of the connections are rewired at the beginning of the simulation with
the same reorganized matrix used throughout the rest of the simulation. In dynamic
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rewiring simulations, in each time step a proportion ¢ of the connections of A used
in the previous time step are rewired so that even for small § the matrix A becomes
progressively more randomized over the course of the simulation. (Examples of
these two procedures are shown below.)

The importance of variation in connection frequency or strength across the
values a;;(k), k=1,...,T, obtained for each dyad i-j, ¢, = 1,..., N, can also be
investigated by increasing the variance over time while keeping the time-averaged
association value @;; = Zfil a;; (k) among dyads constant. High variance among
a;; values corresponds to situations where individuals have two sets of associates,
those that they spend most of their time with and those that they rarely encounter.
Low variance implies a well-mixed population. One might hypothesize that weak
connections are less significant for disease transmission, and hence that systems with
a high variance in connection strength may be less permeable to disease spread. On
the other hand, the disease may spread more rapidly amongst those individuals that
are tightly associated.

The variance can be manipulated while preserving the mean of the associations
of each dyad i-j by defining a new set of elements azj of an association matrix A"
modified using the following algorithm: a value z of a uniformly distributed random
variable Z on [0, 1] is drawn and then

v o Qij +’7(1—dij) if Qij > 2
b = { a;; — (@ ) otherwise
is calculated with the process repeated for each i,57 = 1,..., N. Clearly, for the
extreme cases v = 0 and 1, this procedure produces a?j = a;; and a}j =0 or 1.
Note that the algorithm preserves the topology of the connections except when
a = 1, when some connections are entirely removed and the total proportion of
connections is reduced to a;;.

Cross et al. [16] applied the above methods to association data obtained for
African buffalo from multi-week observations over a two-year period. From these
data, they constructed 24 monthly association matrices for 64 individuals. The
networks associated with May 2002 and the entire study period are illustrated in
Figure 9. These 24 matrices were then used to investigate questions regarding
the spread of disease in this population. Repeating the sequence of 24 association
matrices twice (i.e. A(24+ k) = A(k), k = 1,...,24) to construct a 48 month
period, Cross et al. simulated the spread of a slow moving (8 = 0.4, « = 0.3) and a
fast moving (8 = 0.04, a = 0.03) SIR disease (Figure 10). Note that both epidemics
have the same basic reproductive number Ry = 4/3, so that any differences that
arise between sets of simulations of epidemics are due to time scale differences in the
disease dynamics (the first is ten times faster than the second) relative to the rate
of mixing as determined by the association matrices. These simulations indicate
that a faster-moving disease is more likely to fade out than a slower-moving disease
because the latter integrates over a longer time period; and, the longer the time
period of integration, the more likely it becomes that any two individuals make
contact (i.e. the underlying contact network becomes more fully connected). These
simulations based on empirical social networks thus yield conclusions regarding
timescales that are consistent with findings presented in Section 5.1 for an idealized
metapopulation.

Cross et al. [16] also showed, using the same association matrix at each timestep
(specifically, buffalo data from November 2001) that partial random rewiring had a
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FIGURE 9. Network graphs of the buffalo association data for May
2002 (A) and November 2001 through October 2003 (B). Balls
represent individual buffalo and the lines represent all non-zero
association values. Individuals are distributed vertically according
to herd membership, which was determined by UPGMA cluster
analysis.

non-linear effect upon disease dynamics. In Figure 11 we see that small increases in
the proportion ¢ of nodes rewired randomly at each step (i.e. the dynamic rewiring
simulation described above) lead to solutions that rapidly approach those of a
completely random network (6 = 1.0) by the time § = 0.2.

Finally, Cross et al. found that variance in the connection strength among
dyads had a substantial effect only under certain circumstances. Using the same
association matrix at each timestep, they found that increasing the variance (i.e.
increasing the value of the parameter v) had less effect upon slower than faster
diseases. Further, increasing variance had little effect when the particular associ-
ation matrix used in the simulation represented either a very well or very weakly
connected group of individuals. This effect was investigated further in association
matrices made more sparse by dropping a proportion of connections at random from
an empirical association matrix at the beginning of the simulation. Reducing the
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FIGURE 10. Mean and standard deviations (over 50 stochastic sim-
ulations) of the number of infected individuals using monthly as-
sociation data from the entire study period (closed circles), 2002
(closed triangles), 2003 (open squares), or a mean-field model (open
circles). All simulations used a transmission coefficient 5 of 0.3
and recovery probability v of 0.1. For simulations using one year
of data, the same association matrices were used again the second
year.

number of connections between individuals had a relatively large impact compared
with the effect of increasing the variance in connection strength (Figure 12).

5.3. Epidemics in colonizing populations. Our final example considers
the spread of disease in a population that is itself expanding over a given landscape.
The particular setting for this problem pertains to the reintroduction of Persian fal-
low deer (Dama mesopotamica) in northern Israel [6] and the assessment of how this
reintroduction might have been affected if one of the founding individuals had been
infected with a transmissible disease [7]. A disease of potential concern for Persian
fallow deer is bovine tuberculosis (BTB), which occurs in the European fallow deer,
Dama dama [3, 56]. BTB is endemic in wildlife species such as brushtail possums,
badgers, African buffalo and white-tailed deer in numerous countries worldwide,
with serious economic, ecological and public health consequences [59]. Therefore it
is essential to understand the basic processes underlying its possible spread in this
reintroduced species, and in evaluating the potential efficacy of different manage-
ment strategies should BTB be detected in the northern Israel Persian fallow deer
population. We have undertaken such an evaluation using a range of parameter
values that have been measured with regard to the transmission of BTB in other
deer populations (unfortunately all captive, though—see Wahlstrom et al. [74]).

In a homogeneous landscape, simple models predict that a colonizing host pop-
ulation will spread out in a radially symmetric fashion, with a wavefront that has



MODELING THE INVASION AND SPREAD OF CONTAGIOUS DISEASES 25

60 |

EIE S EEEERE.
g | AN EETS S

< 011%

;

£ 304 ®  dmanic

= o ghatic

JED:{; L] B Huffaly

10

00 o2 O 0.6 a4 1.0
Proporion of connections changed (5

FIGURE 11. The maximum number of individuals infected at any
point in time after 50 time steps depends upon the amount § of
random rewiring of the association network at the beginning of
each simulation (static) or cumulatively every time-step (dynamic).
Dynamic and static simulations started with association data from
November 2001; the point pertaining to the buffalo data was gen-
erated using all of the association data (i.e. unmanipulated). Dis-
ease parameters were 3 = 0.3, a = 0.2. Error bars represent the
standard deviations from 50 stochastic simulations. (For clarity, &
values of the static simulations were increased slightly before plot-
ting.)

a characteristic velocity V,,(t) [67]. Depending on details of the population’s dis-
persal process, this velocity may be constant or increase with time [47, 55] until
the population runs out of space to expand. The rate at which disease spreads in
a colonizing population obviously depends on the value of Ry for that disease (as
would be measured in population that has a relatively large number of susceptibles).
From the material that has been presented thus far, we expect that the disease will
fade out unless Ry is comfortably above 1. If the disease invades successfully, it can
also be regarded as a colonizing process that in a homogeneous population has its
own radially expanding wavefront with velocity Vy(t) [55].

In a homogeneous population we expect the following three scenarios [7]: 1.)
The disease fades out if Ry is less than or equal to 1, or fades out with high prob-
ability if Ry is slightly greater than 1; 2.) If Vy(t) < Vp(¢) for all ¢ during the
population colonization phase, then the disease wavefront lags behind the popula-
tion wavefront and the disease only pervades the entire population some time after
the population runs out of space; 3.) If Vy4(t) > V,(¢) during the initial phase of the
disease, then the disease wavefront follows close behind the population wavefront
until colonization is complete.
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FIGURE 12. The total number of individuals infected after 50 time-
steps decreases with increasing variability in the time-averaged
connection strength between pairs and decreasing temporal vari-
ability of connections within pairs () and the proportion of con-
nections that are removed from the network. See the text for a
description of how + increases the variance in association indices.
Error bars indicate the standard errors of 200 simulations using
September 2003 as the association matrix, 8 = 0.3, and o = 0.1.

Here we illustrate these three possible outcomes for the situation of Persian
fallow deer colonizing a heterogeneous landscape. The model is run on a GIS
landscape template that maps a 630 km? region of northern Israel into 300 x 213
1-hectare pixel elements, each of which has been rated with respect to its quality as
fallow deer habitat. Details of how animals move around and establish territories
are given elsewhere [6]. Transmission is modeled by assuming that individuals
make contact with other individuals in proportion to the degree to which their
respective home ranges overlap [60]. Individuals are assumed to have a fixed time
budget for interaction with other deer (cf. the density-independent contact rate
of frequency-dependent transmission), so the hazard rate of infection scales with
the proportion of all territory overlaps that are occupied by infectious deer (rather
than the total overlap, which would correspond to mass-action transmission with
density- dependent contact rates).

To implement this assumption, the area of overlap a;; for any two individuals ¢
and j needs to be calculated, after which in the notation of expression (5.1) and the
following frequency dependent analog of equation (5.2) can be applied to calculate
the probability that any individual in the model contracts the disease over a given
period of time:

—B (.n aii(k)((lvo)'xj(k))>/ i a;j(k)
piTk :1_6 J=1 j=1
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FIGURE 13. Host population density (black) and disease preva-
lence (purple) are plotted at the end of 10 year projections from
onset of the reintroduction of deer into northern Israel (one infected
individual at start or reintroduction), for the cases A. 8 = 0.1, B.
B =0.5,C. 8=1and D. 8 = 0.5 with vaccination (100% effec-
tive with life-long protection in all released individuals from the
third year onwards and all wild-born young). Results are averaged
over 250 simulations runs, and pixels were colored if their average
density of host individuals (black) or infected individuals (purple)
over all runs was at least 0.5.

In stochastic simulations of the model, the heterogeneous landscape affects the
pattern of the frontal wave of the population expansions, and induces the establish-
ment of population activity centers in preferred habitats [6, 7] and disease centers
within them. The disease range expansion within the colonizing population follows
patterns similar to our predictions for a homogeneous landscape: the transmission
coefficient values () have a major effect on the velocity of disease expansion and
the distance at which it follows the range expansion of the population (Figure 13a—
¢). When S is low, unsurprisingly, the disease has a high probability of fading out
of the population, even without any management interventions (Figure 13a).

For cases in which intervention efforts are needed, simulations of such a model
may help managers to set targets and predict management outcomes (Figure 13d).
Field tests in which host individuals are examined for their disease status along
transects radiating outward from the introduction site are important to ascertain
the relative positions of the disease and population wavefronts. This information
will help managers to distinguish between the three idealized scenarios described
above, and to evaluate the management options aimed at containing the spread of
disease.

6. Conclusion

In this chapter, we have provided a synthetic overview of connections among
the various models we have used to address a range of theoretical and applied prob-
lems, by showing how they are outgrowths of canonical deterministic and branching
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process SIR methods. Along the way, we have endeavoured to emphasize new prop-
erties that emerge as one moves beyond the structurally homogeneous theory into
the more realistic world of heterogeneity with regard to demographic, epidemiologic,
behavioural and spatial structure.

From the material we present, it is clear that assumptions of homogeneity over-
simplify the analysis of most epidemics to the point where estimates of Ry alone
do not adequately describe disease dynamics. Heterogeneity has a profound effect
on epidemics and ignoring it leads to substantial bias in estimating the probability
with which a disease will invade (Figure 4) or the proportion of individuals that
will ultimately become infected (Figure 6). This is why it is important to char-
acterize a disease in heterogeneous populations using appropriate measures, such
as Ry and Pep; (cf. [35, Equation (7.3)]) when heterogeneity exists with regard to
the rates at which diseases are transmitted from one individual to another or, in
the case of metapopulations, group size and relative time-scales of movement and
transmission/demographic processes.

Much work remains to be done to provide a more coherent theory on the spread
of disease in heterogeneous populations. Of course, it will be difficult to general-
ize the effects that the idiosyncratic spatial structures found in all real systems
will have on epidemics. Other more generally defined processes, however, such as
time scale relationships in canonical metapopulation formulations, or descriptions
of heterogeneity using negative binomial, gamma, or other well-known distribu-
tions, provide opportunities for gaining new insights into the spread and control of
disease in heterogeneous populations.
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